SOCAT version 6: 23 million in situ surface ocean CO₂ observations

Dorothée Bakker1, d.bakker@uea.ac.uk, Siv Lauvset2,3, Rik Wanninkhof4, Rocio Castaño-Primo5,6, Kim Currie4, Steve Jones2,3, Camilla Landa2,5, Nicolas Metzl2, Shin-ichiro Nakaoka6, Yukihiro Nojiri6,9, Isao Nonaka6, Kevin O’Brien10,11, Are Olsen6,5, Benjamin Pfeil5,6, Denis Pierrot12, Ute Schuster13, Karl Smith10,11, Kevin Sullivan12, Adrienne Sutton10,11, Bronte Tilbrook14,15 and all >100 SOCAT contributors

Abstract - The Surface Ocean CO₂ Atlas (SOCAT, www.socat.info) is a synthesis activity by international marine carbon scientists (>100 contributors) with annual public releases. SOCAT version 6 has 23.4 million quality-controlled surface ocean CO₂ (fugacity of carbon dioxide) observations from 1957 to 2017 for the global oceans and coastal seas, as well as additional calibrated sensor data. SOCAT enables quantification of the ocean carbon sink, ocean acidification, and evaluation of ocean biogeochemical models in a changing world. SOCAT represents a milestone in biogeochemical and climate research and in informing policy. SOCAT is at risk without sustained funding.

Fig. 1. a) Newly added and b) all quality controlled surface water CO₂ observations (µatm) in version 6 (flags of A-E). Squares indicate moorings.

Fig. 2. Surface water CO₂ values (µatm) in January, February, March (JFM) and July, August, September (JAS) for 1990-97 and 2010-17 in version 6 (data set flags of A-E).

Fig. 3. Number of surface water CO₂ values per year with flags of A-D in versions 1 to 6 (accuracy < 5 µatm) and with flags of A-E (accuracy < 10 µatm) in version 6.

Fig. 4. Anthropogenic ocean carbon uptake in the 2017 Global Carbon Budget. Shown are SOCAT-based mapping results (pink, orange lines), model results (blue lines), the model ensemble mean (black) and model uncertainty (grey shading). Figure from Le Quéré et al., 2018.

Key features:
- In situ surface ocean CO₂ measurements from ships, moorings and other platforms.
- Plus 1.2 million calibrated sensor data (<10 µatm, flag of E)
- Access via online viewers and data download (www.socat.info).
- Consistent quality control (QC).
- No QC for sea surface temperature and salinity.
- New contributors welcome.
- V7 submission ends 15/01/2019, QC ends 31/03/2019.

Scientific findings, applications and impact:
- Large data gaps.
- Documents the increase in global surface ocean CO₂.
- Large year-to-year variation in the global ocean carbon sink.
- Increasing seasonal marine CO₂ variations.
- Models underestimate variation in ocean carbon sink.
- Quantification of the ocean carbon sink.
- Ocean acidification and priors for the land carbon sink.
- Cited by >200 peer-reviewed scientific articles and reports.
- Annual public releases as a Voluntary Commitment to the 2017 UN Ocean Conference (#OceanAction20464).
- SOCAT is at risk without sustained funding.

Fair Data Use - To generously acknowledge the contribution of SOCAT scientists by invitation to co-authorship, especially for data providers in regional studies, and/or reference to relevant scientific articles. Acknowledgements – We thank the numerous contributors, funding agencies, IOCCP, SOLAS and IMBER. Documentation – V3-V6: Bakker et al. (2016) ESDD 8: 383-413; V2: Bakker et al. (2014) ESDD 6:89-90; V1: Pfeil et al. (2013) ESDD 5:125-143; Sabine et al. (2013) ESDD 5:145-153. References – Eyring et al., 2016; Landschützer et al., 2014, 2018; Laruelle et al., 2018; Lauvset et al., 2019; Le Quéré et al., 2018; Rödenbeck et al., 2014, 2015; Williams et al., 2017; Affiliations - 1UEA, UK (d.bakker@uea.ac.uk); 2Uni Research, Norway; 3UiB, Norway; 4NOAA-AOML, USA; 5IEVOR, Norway; 6NIWA, New Zealand; 7LOCEAN, France; 8NIES, Japan; 9Hiroaki University, Japan; 10NOAA-PMEL, USA; 11JISAO, UW, USA; 12CIMAS, USA; 13U Exeter, UK; 14CSIRO, Australia; 15ACECRC, Australia.